Login / Signup

RhoA/ROCK Pathway Is Upregulated in Experimental Autoimmune Myocarditis and Is Inhibited by Simvastatin at the Stage of Myosin Light Chain Phosphorylation.

Monika Skrzypiec-SpringMaciej KaczorowskiAlina Rak-PasikowskaAgnieszka Sapa-WojciechowskaKrzysztof KujawaAgnieszka ŻuryńIwona Bil-LulaAgnieszka HałońAdam Szeląg
Published in: Biomedicines (2024)
Many studies have proven the involvement of the RhoA/ROCK pathway in autoimmune and cardiovascular diseases and the beneficial effects of its downregulation. Here, we examined whether the effect of simvastatin on experimental autoimmune myocarditis (EAM) may be through targeting the Ras homolog family member A/Rho-associated coiled-coil containing kinases (RhoA/ROCK) pathway and whether previously shown downregulation of metalloproteinase 9 (MMP-9) could be associated with MLC phosphorylation. Two doses of simvastatin were administered to experimental rats with autoimmune myocarditis by gastric gavage for 3 weeks, at the stage of development of the inflammatory process. Immunohistochemical staining for RhoA and ROCK1 was evaluated semi-quantitatively with H-score. The RhoA staining showed no significant differences in expression between the groups, but the ROCK1 expression was significantly upregulated in the hearts of the EAM group and was not downregulated by simvastatin. The Western blotting analysis of the last downstream product of the RhoA/ROCK axis, phosphorylated myosin light chain (phospho-MYL9), revealed that protein content increased in EAM hearts and it was prevented by the highest dose of simvastatin. Our findings suggest that the RhoA/ROCK pathway is upregulated in EAM, and simvastatin in EAM settings inhibits the RhoA/ROCK pathway at the stage of phosphorylation of myosin light chains and provides a new insight into the molecular pathology of autoimmune myocarditis.
Keyphrases
  • binding protein
  • multiple sclerosis
  • cardiovascular disease
  • cell proliferation
  • protein kinase
  • drug induced
  • signaling pathway
  • south africa
  • metabolic syndrome
  • long non coding rna
  • gestational age