Evaluation of crypt apoptotic bodies and apoptotic indices in pediatric celiac disease by routine staining and H2AX immunostaining.
Sarah Adel HakimDalia Abd El-KareemPublished in: International journal of immunopathology and pharmacology (2022)
Celiac disease (CD) is an immune-mediated disorder with premature apoptosis occurring along the entire crypt-villous axis. H2AX is the end product of the intrinsic apoptotic pathway. This is the first study to assess apoptotic body counts (ABC) by H&E and apoptotic indices (AI) by immunohistochemistry (IHC) in pediatric CD. The aim of the current study was to evaluate ABC in pediatric patients with CD prior to and following institution of a gluten free diet (GFD). Sixty-three pediatric endoscopic duodenal samples were assessed and divided into three groups. A total of 21 samples from treatment naïve CD patients, 21 from the same patients after instituting a GFD, and 21 from non-celiac patients as a control group. Histopathological evaluation of ABC by H&E, and immunohistochemistry assessment of apoptotic indices (AI) by H2AX antibody were performed. The mean maximum ABC and AI were significantly higher in treatment naïve CD than in GFD and control samples. These values were also significantly higher in treatment naïve Marsh 3C (flat) than in Marsh 1, 2, 3A, and 3B (non-flat) CD cases. GFD samples with persistent flat lesions had significantly higher ABC and AI than GFD non-flat cases. ROC analysis of the mean maximum ABC and AI of treatment naïve CD cases had a statistically significant predictive potential for persistent villous atrophy at a cut-off level ⩾6.61 (P = 0.008) and ⩾105.4 (P = 0.003), respectively. Histopathological evaluation of crypt apoptotic bodies could provide predictive potential for continued villous atrophy following GFD.
Keyphrases
- cell death
- celiac disease
- end stage renal disease
- ejection fraction
- newly diagnosed
- artificial intelligence
- chronic kidney disease
- anti inflammatory
- peritoneal dialysis
- prognostic factors
- nk cells
- oxidative stress
- physical activity
- patient reported outcomes
- cell proliferation
- young adults
- ultrasound guided
- machine learning
- combination therapy
- replacement therapy
- smoking cessation
- climate change