Login / Signup

Spinal motoneurones are intrinsically more responsive in the adult G93A SOD1 mouse model of amyotrophic lateral sclerosis.

Dennis B JensenMarion KadlecovaIlary AllodiClaire Francesca Meehan
Published in: The Journal of physiology (2020)
In vitro studies from transgenic amyotrophic lateral sclerosis models have suggested an increased excitability of spinal motoneurones. However, in vivo intracellular recordings from adult amyotrophic lateral sclerosis mice models have produced conflicting findings. Previous investigations using barbiturate anaesthetized G93A SOD1 mice have suggested that some motoneurones are hypo-excitable, defined by deficits in repetitive firing. Our own previous recordings in G127X SOD1 mice using different anaesthesia, however, showed no repetitive firing deficits and increased persistent inward currents at symptom onset. These discrepancies may be a result of differences between models, symptomatic stage, anaesthesia or technical differences. To investigate this, we repeated our original experiments, but in adult male G93A SOD1 mice, at both presymptomatic and symptomatic stages, under barbiturate anaesthesia. In vivo intracellular recordings from antidromically identified spinal motoneurones revealed that the incidence of failure to fire with current injection was equally low in control and G93A SOD1 mice (∼2%). Motoneurones in G93A SOD1 mice fired significantly more spontaneous action potentials. Rheobase was significantly lower and the input resistance and input-output gain were significantly higher in both presymptomatic and symptomatic G93A SOD1 mice. This was despite a significant increase in the duration of the post-spike after-hyperpolarization in both presymptomatic and symptomatic G93A SOD1 mice. Finally, evidence of increased activation of persistent inward currents was seen in both presymptomatic and symptomatic G93A SOD1 mice. Our results do not confirm previous reports of hypo-excitability of spinal motoneurones in the G93A SOD1 mouse and demonstrate that the motoneurones show an increased response to inputs.
Keyphrases
  • amyotrophic lateral sclerosis
  • high fat diet induced
  • spinal cord
  • traumatic brain injury
  • metabolic syndrome
  • type diabetes
  • emergency department
  • drug delivery
  • high frequency
  • reactive oxygen species
  • cancer therapy