Login / Signup

Homogeneous Electrochemical Reduction of CO2 to CO by a Cobalt Pyridine Thiolate Complex.

Md Estak AhmedAtanu RanaRajat SahaSubal DeyAbhishek Dey
Published in: Inorganic chemistry (2020)
The chemical and electrochemical reduction of CO2 to value added chemicals entails the development of efficient and selective catalysts. Synthesis, characterization and electrochemical CO2 reduction activity of a air-stable cobalt(III) diphenylphosphenethano-bis(2-pyridinethiolate)chloride [{Co(dppe)(2-PyS)2}Cl, 1-Cl] complex is divulged. The complex reduces CO2 under homogeneous electrocatalytic conditions to produce CO with high Faradaic efficiency (FE > 92%) and selectivity in the presence of water. Through detailed electrochemical investigations, product analysis, and mechanistic investigations supported by theoretical calculations, it is established that complex 1-Cl reduces CO2 in its Co(I) state. A reductive cleavage leads to a dangling protonated pyridine arm which enables facile CO2 binding through a H-bond donation and facilitates the C-O bond cleavage via a directed protonation. A systematic benchmarking of this catalyst indicates that it has a modest overpotential (∼180 mV) and a TOF of ∼20 s-1 for selective reduction of CO2 to CO with H2O as a proton source.
Keyphrases