Login / Signup

Modern Strategies To Achieve Tissue-Mimetic, Mechanically Robust Hydrogels.

A Kristen MeansMelissa A Grunlan
Published in: ACS macro letters (2019)
Hydrogels are frequently used biomaterials due to their similarity in hydration and structure to biological tissues. However, their utility is limited by poor mechanical properties, namely, a lack of strength and stiffness that mimic that of tissues, particularly load-bearing tissues. Thus, numerous recent strategies have sought to enhance and tune these properties in hydrogels, including interpenetrating networks (IPNs), macromolecular cross-linking, composites, thermal conditioning, polyampholytes, and dual cross-linking. Individually, these approaches have achieved hydrogels with either high strength (σ f > 10 MPa), high stiffness (E > 1 MPa), or, less commonly, both high strength and stiffness (σ f > 10 MPa and E > 1 MPa). However, only certain unique combinations of these approaches have been able to synergistically achieve retention of a high, tissuelike water content as well as high strength and stiffness. Applying such methods to stimuli-responsive hydrogels has also produced robust, smart biomaterials. Overall, methods to achieve hydrogels that simultaneously mimic the hydration, strength, and stiffness of soft and load-bearing tissues have the potential to be used in a much broader range of biomedical applications.
Keyphrases
  • tissue engineering
  • drug delivery
  • hyaluronic acid
  • drug release
  • extracellular matrix
  • gene expression
  • wound healing
  • cancer therapy
  • climate change