Experimental quantum imaging distillation with undetected light.
Jorge FuenzalidaMarta Gilaberte BassetSebastian TöpferJuan P TorresMarkus GräfePublished in: Science advances (2023)
Imaging based on the induced coherence effect makes use of photon pairs to obtain information of an object without detecting the light that probes it. While one photon illuminates the object, only its partner is detected, so no measurement of coincidence events is needed. The sought-after object's information is revealed, observing a certain interference pattern on the detected photon. Here, we demonstrate experimentally that this imaging technique can be made resilient to noise. We introduce an imaging distillation approach based on the interferometric modulation of the signal of interest. We show that our scheme can generate a high-quality image of an object even against noise levels up to 250 times the actual signal of interest. We also include a detailed theoretical explanation of our findings.