Login / Signup

Electrostatically cooperative host-in-host of metal cluster ⊂ ionic organic cages in nanopores for enhanced catalysis.

Liangxiao TanJun-Hao ZhouJian-Ke SunJiayin Yuan
Published in: Nature communications (2022)
The construction of hierarchically nanoporous composite for high-performance catalytic application is still challenging. In this work, a series of host-in-host ionic porous materials are crafted by encapsulating ionic organic cages into a hyper-crosslinked, oppositely charged porous poly(ionic liquid) (PoPIL) through an ion pair-directed assembly strategy. Specifically, the cationic cage (C-Cage) as the inner host can spatially accommodate a functional Au cluster, forming a [Au⊂C-Cage + ]⊂PoPIL - supramolecular composite. This dual-host molecular hierarchy enables a charge-selective substrate sorting effect to the Au clusters, which amplifies their catalytic activity by at least one order of magnitude as compared to Au confined only by C-Cage as the mono-host (Au⊂C-Cage + ). Moreover, we demonstrate that such dual-host porous system can advantageously immobilize electrostatically repulsive Au⊂C-Cage + and cationic ferrocene co-catalyst (Fer + ) together into the same microcompartments, and synergistically speed up the enzyme-like tandem reactions by channelling the substrate to the catalytic centers via nanoconfinement.
Keyphrases
  • ionic liquid
  • sensitive detection
  • reduced graphene oxide
  • highly efficient
  • solid state
  • water soluble