Login / Signup

Differential influence of habitual third-person vision of a body part on mental rotation of images of hands and feet.

Louisa M EdwardsRyan S CausbyHalton StewartTasha R Stanton
Published in: Experimental brain research (2019)
Left/right judgement (LRJ) tasks involve determining the laterality of presented hand or feet images. Allocentric images (third-person perspective; 3PP) take longer to identify than egocentric images (first-person perspective; 1PP), supporting that implicit motor imagery (IMI)-mentally manoeuvring one's body to match the shown posture-is used. While numerous cognitive processes are involved during LRJs, it remains unclear whether features of the individual (e.g., visual exposure, experience, task-dependent use) influence the type of recognition strategy used during LRJs (IMI versus non-IMI). To investigate whether an individual's routine visual exposure to hands/feet in 3PP disrupts the typical perspective-reaction time (RT) relationship in LRJs, hand therapists, podiatrists, and healthy controls completed online LRJ tasks of hand and feet images. A group-specific reduction in RT for only allocentric images would represent a switch to non-IMI strategies. The results show that routine visual exposure to feet in 3PP (podiatrists) results in quicker RTs only for allocentric images of feet, suggesting a switch from IMI to non-IMI (e.g., visual object-based recognition) strategies. In contrast, routine visual exposure to hands in 3PP (hand therapists) does not alter RT for allocentric images, suggesting maintenance of IMI. However, hand therapists have quicker RTs (vs other groups) for egocentric hand images, supporting enhanced sensorimotor processing for the hand, consistent with task-dependent use (precise hand use). Higher accuracy in health professionals (vs control) on both tasks supports enhanced body schema. Combined, this suggests that 3PP visual exposure to body parts and task-dependent use contribute to LRJ performance/recognition strategy.
Keyphrases
  • deep learning
  • convolutional neural network
  • optical coherence tomography
  • working memory
  • magnetic resonance
  • clinical practice
  • magnetic resonance imaging
  • functional connectivity