Login / Signup

Hydrogen-Bonding Modification in Biuret Under Pressure.

Gustav M BorstadJennifer A Ciezak-Jenkins
Published in: The journal of physical chemistry. A (2017)
Biuret (C2H5N3O2) has been studied to 30 GPa by Raman spectroscopy and 50 GPa by X-ray diffraction. Raman peaks exhibit shoulders and splitting that suggests that the molecules undergo reorientation in response to compression. These are observed in three pressure ranges: the first from 3-5 GPa, the second from 8-12 GPa, and finally from 16-20 GPa. The particular modes in the sample that are observed to change in the Raman are strongly linked to the molecular vibrations involving the N-H and the C═O bond, which are most strongly coupled to the hydrogen-bonded lattice structure. The X-ray diffraction suggests that the crystal maintains a monoclinic structure to the highest pressures studied. Although there was a considerable degree of hysteresis observed in some X-ray runs, all the changes observed under pressure are reversible.
Keyphrases
  • raman spectroscopy
  • electron microscopy
  • high resolution
  • dual energy
  • crystal structure
  • magnetic resonance imaging
  • single molecule