Benign Effects of Twin Boundaries on Charge Carrier Lifetime in Metal Halide Perovskites by a Time-Domain Study.
Xi ZhaoRun LongPublished in: The journal of physical chemistry letters (2021)
Experiments show that two-dimensional twin boundaries (TBs) defects are benign to the excited-state lifetime of metal halide perovskites and solar cells performance. However, the mechanism remains unclear. By performing nonadiabatic (NA) molecular dynamics simulations on FAPbI3 (FA= HC(NH2)2+), we demonstrate that TBs increase the bandgap without introducing midgap states, promote charge separation by localizing electrons and holes that reduce NA coupling and accelerate the loss of coherence, slowing nonradiative electron-hole recombination by a factor of 2.3 compared to pristine FAPbI3, which occurs within sub-10 ns and agrees well with the experiment. Raising the temperature shortens the coherence time and reduces the NA coupling by increasing the charge localization due to the enhanced distortions of inorganic Pb-I lattice, making the recombination even slower. Our study rationalizes the positive influence of TBs and temperature on perovskite charge dynamics and emphasizes the roles played by the charge localization and quantum coherence.