Functionalizing the Electrical Properties of Kombucha Zoogleal Mats for Biosensing Applications.
Anna NikolaidouAlessandro ChiolerioMohammad Mahdi DehshibiAndrew AdamatzkyPublished in: ACS omega (2024)
Kombucha is a type of tea that is fermented using yeast and bacteria. During this process, a film made of cellulose is produced. This film has unique properties such as biodegradability, flexibility, shape conformability, and ability to self-grow as well as be produced across customized scales. In our previous studies, we demonstrated that Kombucha mats exhibit electrical activity represented by spikes of the electrical potential. We propose using microbial fermentation as a method for in situ functionalization to modulate the electroactive nature of Kombucha cellulose mats, where graphene and zeolite were used for the functionalization. We subjected the pure and functionalized Kombucha mats to mechanical stimulation by applying different weights and geometries. Our experiments demonstrated that Kombucha mats functionalized with graphene and zeolite exhibit memfractive properties and respond to load by producing distinctive spiking patterns. Our findings present incredible opportunities for the in situ development of functionalized hybrid materials with sensing, computing, and memory capabilities. These materials can self-assemble and self-grow after they fuse their living and synthetic components. This study contributes to an emergent area of research on bioelectronic sensing and hybrid living materials, opening up exciting opportunities for use in smart wearables, diagnostics, health monitoring, and energy harvesting applications.