Login / Signup

Mechanical and Structural Properties of Articular Cartilage and Subchondral Bone in Human Osteoarthritic Knees.

Yizhong Jenny HuY Eric YuHerbert J CooperRoshan P ShahJeffrey A GellerX Lucas LuElizabeth ShaneJoan BathonNancy E LaneXiang-Dong Edward Guo
Published in: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (2024)
Knee osteoarthritis (OA), characterized by multiple joint tissue degenerations, remains a significant clinical challenge. Recent evidence suggests that crosstalk within the osteochondral unit may drive OA progression. While structural-biomechanical properties of bone and cartilage have been studied, potential interaction within the osteochondral unit in the context of OA has yet to be investigated. We performed comprehensive structural and biomechanical quantification of the cartilage, subchondral bone plate, and subchondral trabecular bone using 101 osteochondral cores collected from tibial plateaus of 12 control human cadavers (CT, 5 male/7 female) and 19 patients undergoing total knee replacement (OA, 6 male/13 female). For each sample, we quantified subchondral bone plate microstructure, plate-and-rod morphological properties of the subchondral trabecular bone using individual trabecula segmentation, and morphological and compositional properties of the articular cartilage. We also performed indentation testing on each compartment of the osteochondral unit to extract the respective structural-mechanical properties. Cartilage thickness was lower in moderate and severe OA regions, while OARSI score was higher only in severe OA regions. GAG content did not change in any OA region. Aggregate and shear moduli were lower only in severe OA regions, while permeability was lower only in moderate OA regions. In the subchondral bone plate, thickness and TMD were higher in moderate and severe OA regions. Tissue modulus of subchondral trabecular bone was lower in moderate OA regions despite a thicker and more mineralized subchondral bone plate; this deterioration was not observed in severe OA regions. Regression analysis revealed strong correlations between cartilage and subchondral trabecular bone properties in CT; these correlations were also found in moderate OA regions but were not observed in severe OA regions. In summary, our findings comprehensively characterize the human OA osteochondral unit. Importantly, uncoupling cartilage and subchondral bone structural-mechanical properties may be a hallmark of OA.
Keyphrases