Evaluation of the Microstructure and Mechanical Properties of a New Modified Cast and Laser-Melted AA7075 Alloy.
Asmaa M KhalilIrina S LoginovaAndrey V PozdniakovAhmed O MoslehAlexey N SoloninPublished in: Materials (Basel, Switzerland) (2019)
The mechanical properties and microstructure of as-cast and homogenized AA7075 were investigated. This alloy was modified by adding transition elements 0.3%Sc + 0.5%Zr, 1%Ti + 0.2%B, and 1%Fe + 1%Ni for use in additive manufacturing applications. After adding Ti + B and Sc + Zr, the structure became uniform and finer with the formation of the Al3(Sc, Zr) and TiB2 phases. Coarse structures were obtained with the formation of an extremely unfavorable morphology, close to a needle-like structure when Fe + Ni was added. The mechanical properties of the modified alloys were increased compared to those of the standard alloy, where the best ultimate tensile strength (UTS) and yield strength (YS) were obtained in the AA7075-TiB alloy compared to the standard alloy in as-cast and homogenized conditions, and the highest hardness value was provided by Fe + Ni additives. The effect of the laser melting process on the microstructure and mechanical properties was investigated. Single laser melts were performed on these alloys using 330 V and a scanning speed of 8 mm/s. During the laser melting, the liquation of the alloying elements occurred due to non-equilibrium solidification. A change in the microstructures was observed within the melt zone and heat-affected zone (HAZ). The hardness of the laser-melted zone (LMZ) after adding the modification elements was increased in comparison with that of the standard alloy. Corrosion testing was performed using a solution of 100 mL distilled water, 3.1 g NaCl, and 1 mL HCl over 5, 10, and 30 min and 1 and 2 h. The corrosion resistance of the alloy modified with FeNi was low because of the non-uniform elemental distribution along the LMZ, but in the case of modification with ScZr and TiB, the corrosion resistance was better compared to that of the standard alloy.