Login / Signup

Rheological Behavior of Blends of Metallocene Catalyzed Long-Chain Branched Polyethylenes. Part I: Shear Rheological and Thermorheological Behavior.

Chuangbi ChenMehdihasan I ShekhShuming CuiFlorian J Stadler
Published in: Polymers (2021)
Long-chain branched metallocene-catalyzed high-density polyethylenes (LCB-mHDPE) were solution blended to obtain blends with varying degrees of branching. A high molecular LCB-mHDPE was mixed with low molecular LCB-mHDPE at varying concentrations. The rheological behavior of those low molecular LCB-mHDPE is similar but their molar mass and molar mass distribution are significantly different. Those blends were characterized rheologically to study the effects of concentration, molar mass distribution, and long-chain branching level of the low molecular LCB-mHDPE. Owing to the ultra-long relaxation times of the high molecular LCB-mHDPE, the blends exhibited a clearly more long-chain branched behavior than the base materials. The thermorheological complexity analysis showed an apparent increase in the activation energies Ea determined from G', G″, and especially δ. Ea (δ), which for LCB-mHDPE is a peak function, turned out to produce even more pronounced peaks than observed for LCB-mPE with narrow molar mass distribution and also LCB-mPE with broader molar mass distribution. Thus, it is possible to estimate the molar mass distribution from the details of the thermorheological complexity.
Keyphrases
  • high density
  • single molecule
  • computed tomography
  • high resolution
  • mass spectrometry
  • magnetic resonance
  • molecular dynamics
  • data analysis