Dual-Functional Template-Directed Synthesis of MoSe2/Carbon Hybrid Nanotubes with Highly Disordered Layer Structures as Efficient Alkali-Ion Storage Anodes beyond Lithium.
Baoqiang LiYi LiuYapeng LiShuhong JiaoSuyuan ZengLiang ShiGenqiang ZhangPublished in: ACS applied materials & interfaces (2019)
Sodium/Potassium-ion batteries (SIBs/PIBs) have recently received tremendous attention because of their particular features of cost-effectiveness and promising energy density, which hold great potential for large-scale applications. Nevertheless, it still has a common bottleneck issue that is the sluggish kinetics of Na+/K+ intercalation, which raises more rigorous requirement on the electrode candidates regarding the morphology, dimension, and architecture. Herein, we have constructed unique MoSe2-based hybrid nanotubes with wall structures composed of highly disordered MoSe2 layers embedded in phosphorus and nitrogen co-doped carbon matrix (denoted MoSe2⊂PNC-HNTs), by a facile two-step strategy using Se nanorods as the dual-functional template, i.e., shape-directed agent and in situ selenization resources. Benefitting from the combined features of the one-dimensional (1D) hollow interior, hybrid wall structure with high disorder, and the phosphorus and nitrogen co-doping-induced abundant defect sites in the carbon matrix, the MoSe2⊂PNC-HNT anode exhibits high specific capacities of 280 and 262 mA h g-1 over 200 cycles at the current density of 0.1 A g-1 for Na+ and K+ storage, respectively, and achieves remarkable capacity retention rates of 87.0% at 2 A g-1 over 3500 cycles for Na-ion storage and 80.1% at 1 A g-1 after 500 cycles for K-ion storage.