Self-Assembled Supramolecular Nanoparticles for Targeted Delivery and Combination Chemotherapy.
Bingjie LiZhenzhen FengLeiliang HeWenshan LiKemin WangJianbo LiuJin HuangYan ZhengYanyun MaXiaohai YangKemin WangPublished in: ChemMedChem (2018)
It is challenging but imperative to merge imaging agents and small molecule therapeutics into one nanoentity for diagnosis and treatment. Herein, we constructed polymeric nanoparticles for targeted delivery and combination chemotherapy, which formed through host-guest interactions among three elements: 1) β-cyclodextrin polymer (poly-β-CD), as the backbone of nanoparticles; 2) two antitumor drugs-doxorubicin (DOX) and docetaxel (DTX); and 3) aptamers labeled with adamantane and fluorescein (Ad-aptamer-FAM), as recognition elements. First, polymeric nanoparticles, termed self-assembled supramolecular nanoparticles (SSNPs), were formulated by combining hydrophobic DTX and DOX with poly-β-CD via host-guest interactions. Then, the surface of SSNPs modified the aptamer to acquire targeting ability; such nanoparticles were termed targeted self-assembled supramolecular nanoparticles (T-SSNPs). As evidenced by MTS assay data, T-SSNPs exhibited significant selective cytotoxicity toward target cells. The results also indicated that combination drugs achieved a good synergistic effect with a combination index of 0.43. Thus, an effective and simple drug delivery system was constructed for targeted delivery and combination chemotherapy.