Competitive Reactivity of SO2 and NO2 with N-Heterocyclic Carbene: A Mechanistic Study.
Ratan LogdiArijit BagAshwani K TiwariPublished in: The journal of physical chemistry. A (2021)
Recent DFT based molecular engineering to obtain stable oxathiirane S-oxide derivatives evokes the recommencement of the use of carbenes for the sequestering of SO2, which has been kept separate so far. Carbene is one of the key chemicals for the sequestering of various premier greenhouse gases like CO2, CO, N2O, etc. In this respect, a comparative study of the reactivity of carbenes with variant greenhouse gases is highly demanding. The present investigation is engrossed in the comparative reactivity of SO2 and NO2 with carbenes. All three selected carbenes are highly susceptible to SO2 and NO2. Through an immaculate mechanistic study, we are able to corroborate that the end product of the carbene-SO2 reaction is an adduct which has a preferable structure having a six-membered ring with hydrogen bonding instead of ketone and SO with higher thermodynamic stability than the corresponding oxathiirane S-oxide derivative. Carbene reacts with NO2 to form a stable carbene N, N-dioxide derivative which forms vibrationally excited oxaziridine N-oxide which rapidly dissociates to form a ketone derivative. The formation of carbene S, S-dioxide and carbene N, N-dioxide is a barrierless process. The dissociation of oxaziridene N-oxide is also a barrierless process.