Inhibition of Transmural Inflammation in Crohn's Disease by Orally Administered Tumor Necrosis Factor-Alpha Deoxyribozymes-Loaded Pyroptosis Nanoinhibitors.
Zhun LiZhenxing ZhuDongtao ZhouYusheng ChenYi YinZhibin ZhangJingjing YangYanfeng GaoWeiming ZhuYujun SongYi LiPublished in: ACS applied materials & interfaces (2024)
Crohn's disease (CD) is a refractory chronic inflammatory bowel disease (IBD) with unknown etiology. Transmural inflammation, involving the intestine and mesentery, represents a characteristic pathological feature of CD and serves as a critical contributor to its intractability. Here, this study describes an oral pyroptosis nanoinhibitor loaded with tumor necrosis factor-α (TNF-α) deoxyribozymes (DNAzymes) (DNAzymes@degradable silicon nanoparticles@Mannose, Dz@MDSN), which can target macrophages at the site of inflammation and respond to reactive oxygen species (ROS) to release drugs. Dz@MDSN can not only break the inflammatory cycle in macrophages by degrading TNF-α mRNA but also reduce the production of ROS mainly from macrophages. Moreover, Dz@MDSN inhibits excessive pyroptosis in epithelial cells through ROS clearance, thereby repairing the intestinal barrier and reducing the translocation of intestinal bacteria to the mesentery. Consequently, these combined actions synergistically contribute to the suppression of inflammation within both the intestine and the mesentery. This study likely represents the first successful attempt in the field of utilizing nanomaterials to achieve transmural healing for CD, which also provides a promising treatment strategy for CD patients.