Login / Signup

Natural Mutations Affect Structure and Function of gC1q Domain of Otolin-1.

Rafał HołubowiczAndrzej OżyharPiotr Dobryszycki
Published in: International journal of molecular sciences (2021)
Otolin-1 is a scaffold protein of otoliths and otoconia, calcium carbonate biominerals from the inner ear. It contains a gC1q domain responsible for trimerization and binding of Ca2+. Knowledge of a structure-function relationship of gC1q domain of otolin-1 is crucial for understanding the biology of balance sensing. Here, we show how natural variants alter the structure of gC1q otolin-1 and how Ca2+ are able to revert some effects of the mutations. We discovered that natural substitutions: R339S, R342W and R402P negatively affect the stability of apo-gC1q otolin-1, and that Q426R has a stabilizing effect. In the presence of Ca2+, R342W and Q426R were stabilized at higher Ca2+ concentrations than the wild-type form, and R402P was completely insensitive to Ca2+. The mutations affected the self-association of gC1q otolin-1 by inducing detrimental aggregation (R342W) or disabling the trimerization (R402P) of the protein. Our results indicate that the natural variants of gC1q otolin-1 may have a potential to cause pathological changes in otoconia and otoconial membrane, which could affect sensing of balance and increase the probability of occurrence of benign paroxysmal positional vertigo (BPPV).
Keyphrases
  • gas chromatography
  • healthcare
  • protein kinase
  • wild type
  • copy number
  • risk assessment
  • gene expression
  • dna methylation
  • amino acid
  • protein protein
  • climate change
  • genome wide
  • human health