Login / Signup

Using Bayesian time-stratified case-crossover models to examine associations between air pollution and "asthma seasons" in a low air pollution environment.

Matthew BozigarAndrew B LawsonJohn L PearceErik R SvendsenJohn E Vena
Published in: PloS one (2021)
Many areas of the United States have air pollution levels typically below Environmental Protection Agency (EPA) regulatory limits. Most health effects studies of air pollution use meteorological (e.g., warm/cool) or astronomical (e.g., solstice/equinox) definitions of seasons despite evidence suggesting temporally-misaligned intra-annual periods of relative asthma burden (i.e., "asthma seasons"). We introduce asthma seasons to elucidate whether air pollutants are associated with seasonal differences in asthma emergency department (ED) visits in a low air pollution environment. Within a Bayesian time-stratified case-crossover framework, we quantify seasonal associations between highly resolved estimates of six criteria air pollutants, two weather variables, and asthma ED visits among 66,092 children ages 5-19 living in South Carolina (SC) census tracts from 2005 to 2014. Results show that coarse particulates (particulate matter <10 μm and >2.5 μm: PM10-2.5) and nitrogen oxides (NOx) may contribute to asthma ED visits across years, but are particularly implicated in the highest-burden fall asthma season. Fine particulate matter (<2.5 μm: PM2.5) is only associated in the lowest-burden summer asthma season. Relatively cool and dry conditions in the summer asthma season and increased temperatures in the spring and fall asthma seasons are associated with increased ED visit odds. Few significant associations in the medium-burden winter and medium-high-burden spring asthma seasons suggest other ED visit drivers (e.g., viral infections) for each, respectively. Across rural and urban areas characterized by generally low air pollution levels, there are acute health effects associated with particulate matter, but only in the summer and fall asthma seasons and differing by PM size.
Keyphrases