Exploring the Genomic Landscape of Bacillus paranthracis PUMB_17 as a Proficient Phosphatidylcholine-Specific Phospholipase C Producer.
Vesselin BaevIvan IlievYordan StefanovMarinela TsankovaMariana MarhovaElena ApostolovaMariyana GozmanovaGalina YahubyanSonya KostadinovaPublished in: Current issues in molecular biology (2024)
Phospholipases find versatile applications across industries, including detergent production, food modification, pharmaceuticals (especially in drug delivery systems), and cell signaling research. In this study, we present a strain of Bacillus paranthracis for the first time, demonstrating significant potential in the production of phosphatidylcholine-specific phospholipase C (PC-PLC). The investigation thoroughly examines the B. paranthracis PUMB_17 strain, focusing on the activity of PC-PLC and its purification process. Notably, the PUMB_17 strain displays extracellular PC-PLC production with high specific activity during the late exponential growth phase. To unravel the genetic makeup of PUMB_17, we employed nanopore-based whole-genome sequencing and subsequently conducted a detailed genome annotation. The genome comprises a solitary circular chromosome spanning 5,250,970 bp, featuring a guanine-cytosine ratio of 35.49. Additionally, two plasmids of sizes 64,250 bp and 5845 bp were identified. The annotation analysis reveals the presence of 5328 genes, encompassing 5186 protein-coding sequences, and 142 RNA genes, including 39 rRNAs, 103 tRNAs, and 5 ncRNAs. The aim of this study was to make a comprehensive genomic exploration that promises to enhance our understanding of the previously understudied and recently documented capabilities of Bacillus paranthracis and to shed light on a potential use of the strain in the industrial production of PC-PLC.