Evolution of Nucleic-Acid-Based Constitutional Dynamic Networks Revealing Adaptive and Emergent Functions.
Liang YueVerena WulfShan WangItamar WillnerPublished in: Angewandte Chemie (International ed. in English) (2019)
The evolution of networks is a fundamental unresolved issue in developing the area of systems chemistry. We introduce a versatile rewiring mechanism that leads to the emergence of nucleic-acid-based constitutional dynamic networks (CDNs). A two-component constituent AA' functionalized with a Mg2+ -ion-dependent DNAzyme activator unit forms a complex with an intact hairpin HBB' composed of B and B' sequences. Cleavage of HBB' leads to the two-component constituent BB', and its rewiring with AA' yields CDN X composed of the equilibrated constituents AA', AB', BA', and BB'. In analogy, subjecting AA' to an intact hairpin HCC' leads to the formation of CDN Y consisting of AA', AC', CA', and CC'. Subjecting AA' to the mixture of HBB' and HCC' evolves the [3×3] CDN Z, composed of nine constituents, thus demonstrating hierarchical adaptive properties. Furthermore, the DNAzyme units associated with the constituents are applied to tailor emerging catalytic functions from the different CDNs.