Login / Signup

H2S Generation from CS2 Hydrolysis at a Dinuclear Zinc(II) Site.

Ananya SajuAditesh MondalTaraknath ChattopadhyayGayathri KolliyedathSubrata Kundu
Published in: Inorganic chemistry (2020)
The controlled generation of hydrogen sulfide (H2S) under biologically relevant conditions is of paramount importance due to therapeutic interests. Via exploring the reactivity of a structurally characterized phenolate-bridged dinuclear zinc(II)-aqua complex {LZnII(OH2)}2(ClO4)2 (1a) as a hydrolase model, we illustrate in this report that complex 1a readily hydrolyses CS2 in the presence of Et3N to afford H2S. In contrast, penta-coordinated [ZnII] sites in dinuclear {(LZnII)2(μ-X)}(ClO4) complexes (7, X = OAc; 8, X = dimethylpyrazolyl) do not mediate CS2 hydrolysis in the presence of externally added water and Et3N presumably due to the unavailability of a coordination site for water at the [ZnII] centers. Moreover, [ZnII]-OH sites present in the isolated tetranuclear zinc(II) complex {(LZnII)2(μ-OH)}2(ClO4)2 (4) react with CS2, thereby suggesting that the [ZnII]-OH site serves as the active nucleophile. Furthermore, mass spectrometric analyses on the reaction mixture consisting of 1a/Et3N and CS2 suggest the involvement of zinc(II)-thiocarbonate (3a) and COS species, thereby providing mechanistic insights into CS2 hydrolysis mediated by the dinuclear [ZnII] hydrolase model complex 1a.
Keyphrases
  • oxide nanoparticles
  • magnetic resonance
  • computed tomography