Login / Signup

In Vitro Investigation of Pulsed Electromagnetic Field Stimulation (PEMF) with MAGCELL ® ARTHRO on the Regulatory Expression of Soluble and Membrane-Bound Complement Factors and Inflammatory Cytokines in Immortalized Synovial Fibroblasts.

Sandeep SilawalMarkus GeßleinMaximilian WillauschusGundula Gesine Schulze-Tanzil
Published in: Journal of personalized medicine (2024)
Pulsed electromagnetic field stimulation (PEMF) is gaining more attention as a non-invasive arthritis treatment. In our study, immortalized synovial fibroblasts (K4IM) derived from a non-arthritic donor were exposed to MAGCELL ® ARTHRO, a PEMF device, with 105 mT intensity, 8 Hz frequency, and 2 × 2.5 min sessions conducted thrice with a 1 h interval, to understand the underlying mechanism in regard to the complement system. Additionally, tumor necrosis factor (TNFα, 10 ng/mL) pre-treatment prior to PEMF stimulation, as well as 3-day versus 6-day stimulation, were compared. Gene expression of C4b binding protein-alpha and -beta (C4BPα, C4BPβ), complement factor (CF)-H, CFI, CD55, CD59, Interleukin (IL-6) and TNFα was analyzed. Immunofluorescence staining of CD55, CD59, and Ki67 was conducted. Results showed the absence of C4BPα gene expression, but C4BPβ was present. One and three days of PEMF stimulation caused no significant changes. However, after six days, there was a significant increase in CD55, CFH, and CD59 gene expression, indicating cytoprotective effects. Conversely, IL-6 gene expression increased after six days of stimulation and even after a single session in TNFα pre-stimulated cells, indicating a pro-inflammatory effect. PEMF's ambivalent, i.e., enhancing complement regulatory proteins and pro-inflammatory cytokines, highlights its complexity at the molecular level.
Keyphrases