Pericyte dynamics in the mouse germinal matrix angiogenesis.
Taliha NadeemApoorva BommareddyLolade BolarinwaHenar Cuervo GrajalPublished in: FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2022)
Germinal matrix-intraventricular hemorrhage (GM-IVH) is the most devastating neurological complication in premature infants. GM-IVH usually begins in the GM, a highly vascularized region of the developing brain where glial and neuronal precursors reside underneath the lateral ventricular ependyma. Previous studies using human fetal tissue have suggested increased angiogenesis and paucity of pericytes as key factors contributing to GM-IVH pathogenesis. Yet, despite its relevance, the mechanisms underlying the GM vasculature's susceptibility to hemorrhage remain poorly understood. To gain better understanding on the vascular dynamics of the GM, we performed a comprehensive analysis of the mouse GM vascular endothelium and pericytes during development. We hypothesize that vascular development of the mouse GM will provide a good model for studies of human GM vascularization and provide insights into the role of pericytes in GM-IVH pathogenesis. Our findings show that the mouse GM presents significantly greater vascular area and vascular branching compared to the developing cortex (CTX). Analysis of pericyte coverage showed abundance in PDGFRβ-positive and NG2-positive pericyte coverage in the GM similar to the developing CTX. However, we found a paucity in Desmin-positive pericyte coverage of the GM vasculature. Our results underscore the highly angiogenic nature of the GM and reveal that pericytes in the developing mouse GM exhibit distinct phenotypical and likely functional characteristics compared to other brain regions which might contribute to the high susceptibility of the GM vasculature to hemorrhage.