Login / Signup

Whole-Exome Sequencing Identified a Novel Homozygous Frameshift Mutation of HPS3 in a Consanguineous Family with Hermansky-Pudlak Syndrome.

Zhao-Xia WangYi-Hui LiuYi DongYa-Li LiTie-Yu TangLiang-Liang Fan
Published in: BioMed research international (2021)
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder with an autosomal recessive inherited pattern. It is mainly characterized by deficiencies in lysosome-related organelles, such as melanosomes and platelet-dense granules, and leads to albinism, visual impairment, nystagmus, and bleeding diathesis. A small number of patients will present with granulomatous colitis or fatal pulmonary fibrosis. At present, mutations in ten known genetic loci (HPS1-11) have been identified to be the genetic cause of HPS. In this study, we enrolled a consanguineous family who presented with typical HPS phenotypes, such as albinism, visual impairment, nystagmus, and bleeding diathesis. Whole-exome sequencing and Sanger sequencing were applied to explore the genetic lesions of the patient. A novel homozygous frameshift mutation (NM_032383.5, c.1231dupG/p.Aps411GlyfsTer32) of HPS3 was identified and cosegregated in the family members. Furthermore, real-time PCR confirmed that the mutation decreased the expression of HPS3, which has been identified as the disease-causing gene of HPS type 3. According to ACMG guidelines, the novel mutation, resulting in a premature stop codon at amino acid 442, is a pathogenic variant. In summary, we identified a novel mutation (NM_032383.5, c.1231dupG/p.Aps411GlyfsTer32) of HPS3 in a family with HPS. Our study expanded the variant spectrum of the HPS3 gene and contributed to genetic counseling and prenatal genetic diagnosis of the family.
Keyphrases