4D- quantitative structure-activity relationship modeling: making a comeback.
Denis FourchesJeremy AshPublished in: Expert opinion on drug discovery (2019)
Introduction: Predictive Quantitative Structure-Activity Relationship (QSAR) modeling has become an essential methodology for rapidly assessing various properties of chemicals. The vast majority of these QSAR models utilize numerical descriptors derived from the two- and/or three-dimensional structures of molecules. However, the conformation-dependent characteristics of flexible molecules and their dynamic interactions with biological target(s) is/are not encoded by these descriptors, leading to limited prediction performances and reduced interpretability. 2D/3D QSAR models are successful for virtual screening, but typically suffer at lead optimization stages. That is why conformation-dependent 4D-QSAR modeling methods were developed two decades ago. However, these methods have always suffered from the associated computational cost. Recently, 4D-QSAR has been experiencing a significant come-back due to rapid advances in GPU-accelerated molecular dynamic simulations and modern machine learning techniques. Areas covered: Herein, the authors briefly review the literature regarding 4D-QSAR modeling and describe its modern workflow called MD-QSAR. Challenges and current limitations are also highlighted. Expert opinion: The development of hyper-predictive MD-QSAR models could represent a disruptive technology for analyzing, understanding, and optimizing dynamic protein-ligand interactions with countless applications for drug discovery and chemical toxicity assessment. Therefore, there has never been a better time and relevance for molecular modeling teams to engage in hyper-predictive MD-QSAR modeling.