Login / Signup

Metal-Organic Layers for Synergistic Lewis Acid and Photoredox Catalysis.

Yangjian QuanGuangxu LanYingjie FanWenjie ShiEric YouWenbin Lin
Published in: Journal of the American Chemical Society (2020)
We report the design of a new multifunctional metal-organic layer (MOL), Hf12-Ir-OTf, comprising triflate (OTf)-capped Hf12 secondary building units (SBUs) and photosensitizing Ir(DBB)[dF(CF3)ppy]2+ [DBB-Ir-F, DBB = 4,4'-di(4-benzoato)-2,2'-bipyridine; dF(CF3)ppy = 2-(2,4-difluorophenyl)-5-(trifluoromethyl)pyridine] bridging ligands. Hf12-Ir-OTf effectively catalyzed dehydrogenative cross-couplings of heteroarenes with ethers, amines, and unactivated alkanes with turnover numbers of 930, 790, and 950, respectively. Hf12-Ir-OTf also competently catalyzed late-stage functionalization of bioactive and drug molecules such as caffeine, Fasudil, and Metyrapone. The superior catalytic performance of Hf12-Ir-OTf over a mixture of photoredox catalyst and stoichiometric amounts of Brønsted acids or substoichiometric amounts (20 mol %) of Lewis acids is attributed to the close proximity (1.2 nm) between photoredox and Lewis acid catalysts in Hf12-Ir-OTf, which not only facilitates the reaction between the carbon radical and the activated heteroarene but also accelerates the electron transfer from the nitrogen radical intermediate to the Ir(IV) species in the catalytic cycle.
Keyphrases