Login / Signup

Molecular dynamics simulation of octacosane for phase diagrams and properties via the united-atom scheme.

L DaiP P RutkevychS ChakrabortyGang WuJun YeY H LauH RamanarayanD T Wu
Published in: Physical chemistry chemical physics : PCCP (2021)
We used the united-atom scheme to build three types of crystalline structures for octacosane (C28H58) and carried out molecular dynamics simulations to investigate their phase properties. By gradually heating the three polymorphs, we managed to reproduce the sequence of experimentally reported crystalline phases and rotator phases. By studying the system density, molecule morphology, chain tilt angle and cell anisotropy, we hypothesized three mechanisms behind the observed system deformations and phase transformations during the annealing process. Furthermore, our model successfully predicted the melting temperature and heat of fusion. We also reproduced the characteristics of the rotator phases and the liquid phase, validating the transferability of the united-atom scheme among the different condensed phases of octacosane. Our methodology represents an effective and efficient means of numerical study for octacosane and may be used for other members of the n-alkane family.
Keyphrases
  • molecular dynamics simulations
  • molecular docking
  • high resolution
  • molecular dynamics
  • room temperature
  • stem cells
  • mesenchymal stem cells
  • ionic liquid
  • heat stress
  • bone marrow
  • cell therapy