Login / Signup

Solid-Liquid Triboelectric Nanogenerator Based on Vortex-Induced Resonance.

Xiaowei LiDi ZhangDan ZhangZhongjie LiHao WuYuan ZhouBiao WangHengyu GuoYan Peng
Published in: Nanomaterials (Basel, Switzerland) (2023)
Energy converters based on vortex-induced vibrations (VIV) have shown great potential for harvesting energy from low-velocity flows, which constitute a significant portion of ocean energy. However, solid-solid triboelectric nanogenerators (TENG) are not wear-resistant in corrosive environments. Therefore, to effectively harvest ocean energy over the long term, a novel solid-liquid triboelectric nanogenerator based on vortex-induced resonance (VIV-SL-TENG) is presented. The energy is harvested through the resonance between VIV of a cylinder and the relative motions of solid-liquid friction pairs inside the cylinder. The factors that affect the output performance of the system, including the liquid mass ratio and the deflection angle of the friction plates, are studied and optimized by establishing mathematical models and conducting computational fluid dynamics simulations. Furthermore, an experimental platform for the VIV-SL-TENG system is constructed to test and validate the performance of the harvester under different conditions. The experiments demonstrate that the energy harvester can successfully convert VIV energy into electrical energy and reach maximum output voltage in the resonance state. As a new type of energy harvester, the presented design shows a promising potential in the field of 'blue energy' harvesting.
Keyphrases
  • energy transfer
  • wastewater treatment
  • diabetic rats
  • high glucose
  • high throughput
  • molecular dynamics
  • endothelial cells
  • climate change
  • drug induced
  • stress induced