Multi-Functional Janus Hollow Solar Evaporator Based on Copper Foam for Non-Contact High-Efficiency Solar Interfacial Distillation.
Mengnan QuYue ZhaoJianwei GeYuyu XueLeihuan MuQinghua LiuJufeng YanHui LiuCai-Li SunJinmei HePublished in: ACS applied materials & interfaces (2023)
As a sustainable, clean, and friendly technology with a minimal carbon footprint when treating seawater or wastewater, interfacial solar vapor generation (ISVG) technology is a great alternative to traditional desalination and water purification methods (e.g., reverse osmosis and ultrafiltration). So far, it presents tremendous potential for applications in realizing desalination of seawater or brine, wastewater treatment, and so forth. However, the precipitated salt particles during conventional ISVG inevitably block the evaporator surface, resulting in the degradation of photothermal conversion and decrease of evaporation rate. Herein, a multi-functional non-contact Janus hollow evaporator based on copper foam was prepared, which was assembled by a hydrophobic light-to-heat conversion layer and a hydrophilic interfacial water evaporation layer as two separate parts. Accordingly, the precipitated salt in the ISVG system does not block the photothermal interface, increasing the stability of solar capture and reusability of the evaporator. Notably, the hollow structure of the evaporator has a local interfacial heating effect, endowing the evaporation system with a high seawater evaporation rate of 2.249 kg m -2 h -1 . The evaporator is capable of stable operation for 10 h under 1 sun illumination even when evaporating concentrated brine (15 wt %). Moreover, the evaporation rate of water under one sun irradiation reached 2.284 kg m -2 h -1 and the solar-to-vapor efficiency reached 96.6%. Not only that, the evaporator was able to successfully purify wastewater containing dyes and heavy metal ions. The multi-functional Janus hollow interfacial solar evaporator will provide inspiration for upcoming research on the production of safety water.
Keyphrases