This review intends to bridge the gap between our knowledge of steroid hormone regulation of motile cilia and the potential involvement of the primary cilium focusing on the female reproductive tract functions. The review emphasizes hormonal regulation of the motile and primary cilia in the oviduct and uterus. Steroid hormones including estrogen, progesterone, and testosterone act through their cognate receptors to regulate the development and biological function of the reproductive tracts. These hormones modulate motile ciliary beating and, in some cases, primary cilia function. Dysfunction of motile or primary cilia due to genetic anomalies, hormone imbalances, or loss of steroid hormone receptors impairs mammalian fertility. However, further research on hormone modulation of ciliary function, especially in the primary cilium, and its signaling cascades will provide insights into the pathogenesis of mammalian infertility and the development of contraceptives or infertility treatments targeting primary and/or motile cilia.