Login / Signup

Is It Possible to Restrain OER on Simple Carbon Electrodes to Efficiently Electrooxidize Organic Pollutants?

Marija Ječmenica DučićDanka AćimovićBranislava SavićLazar RakočevićMarija SimićTanja BrdarićDragana D Vasić Anićijević
Published in: Molecules (Basel, Switzerland) (2022)
This paper presents a comparative analysis of three carbon-based electrodes: bare multiwalled carbon nanotubes (MWCNT), SnO 2 /MWCNT, and PbO 2 /graphene-nanoribbons (PbO 2 /GNR) composites, as anodes for the electrooxidative degradation of Rhodamine B as a model organic pollutant. Anodic electrooxidation of Rhodamine B was performed on all three electrodes, and the decolorization efficiency was found to increase in the order MWCNT < PbO 2 /GNR < SnO 2 /MWCNT. The electrodes were characterized by X-ray photoelectron spectroscopy (XPS) and linear sweep voltammetry (LSV). It was proposed that, in the 0.1 M Na 2 SO 4 applied as electrolyte, observed decolorization mainly occurs in the interaction of Rhodamine B with OH radical adsorbed on the anode. Finally, the obtained results were complemented with Density Functional Theory (DFT) calculations of OH-radical interaction with appropriate model surfaces: graphene(0001), SnO 2 (001), and PbO 2 (001). It was found that the stabilization of adsorbed OH-radical on metal oxide spots (SnO 2 or PbO 2 ) compared to carbon is responsible for the improved efficiency of composites in the degradation of Rhodamine B. The observed ability of metal oxides to improve the electrooxidative potential of carbon towards organic compounds can be useful in the future design of appropriate anodes.
Keyphrases