Login / Signup

Singlet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals.

Feng LiAlexander James GillettQinying GuJunshuai DingZhangwu ChenTimothy J H HeleWilliam K MyersRichard Henry FriendEmrys W Evans
Published in: Nature communications (2022)
Organic light-emitting diodes (OLEDs) must be engineered to circumvent the efficiency limit imposed by the 3:1 ratio of triplet to singlet exciton formation following electron-hole capture. Here we show the spin nature of luminescent radicals such as TTM-3PCz allows direct energy harvesting from both singlet and triplet excitons through energy transfer, with subsequent rapid and efficient light emission from the doublet excitons. This is demonstrated with a model Thermally-Activated Delayed Fluorescence (TADF) organic semiconductor, 4CzIPN, where reverse intersystem crossing from triplets is characteristically slow (50% emission by 1 µs). The radical:TADF combination shows much faster emission via the doublet channel (80% emission by 100 ns) than the comparable TADF-only system, and sustains higher electroluminescent efficiency with increasing current density than a radical-only device. By unlocking energy transfer channels between singlet, triplet and doublet excitons, further technology opportunities are enabled for optoelectronics using organic radicals.
Keyphrases
  • energy transfer
  • quantum dots
  • solid state
  • single molecule
  • density functional theory
  • sensitive detection
  • dengue virus
  • loop mediated isothermal amplification