The role of glucocorticoid receptor gene in the association between attention deficit-hyperactivity disorder and smaller brain structures.
Cibele E BandeiraEugenio H GrevetRenata B CupertinoMaria E de Araujo TavaresClara S GusmãoDjenifer B KappelEduardo S VitolaFelipe A PiconLuís A RohdeBruna S da SilvaClaiton H D BauDiego Luiz RovarisPublished in: Journal of neural transmission (Vienna, Austria : 1996) (2021)
ADHD is associated with smaller subcortical brain volumes and cortical surface area, with greater effects observed in children than adults. It is also associated with dysregulation of the HPA axis. Considering the effects of the glucocorticoid receptor (NR3C1) in neurophysiology, we hypothesize that the blurred relationships between brain structures and ADHD in adults could be partly explained by NR3C1 gene variation. Structural T1-weighted images were acquired on a 3 T scanner (N = 166). Large-scale genotyping was performed, and it was followed by quality control and pruning procedures, which resulted in 48 independent NR3C1 gene variants analyzed. After a stringent Bonferroni correction, two SNPs (rs2398631 and rs72801070) moderated the association between ADHD and accumbens and amygdala volumes in adults. The significant SNPs that interacted with ADHD appear to have a role in gene expression regulation, and they are in linkage disequilibrium with NR3C1 variants that present well-characterized physiological functions. The literature-reported associations of ADHD with accumbens and amygdala were only observed for specific NR3C1 genotypes. Our findings reinforce the influence of the NR3C1 gene on subcortical volumes and ADHD. They suggest a genetic modulation of the effects of a pivotal HPA axis component in the neuroanatomical features of ADHD.
Keyphrases
- attention deficit hyperactivity disorder
- genome wide
- copy number
- autism spectrum disorder
- resting state
- white matter
- working memory
- dna methylation
- gene expression
- functional connectivity
- quality control
- magnetic resonance
- high throughput
- magnetic resonance imaging
- high resolution
- deep learning
- human immunodeficiency virus
- computed tomography
- hepatitis c virus
- convolutional neural network
- brain injury
- temporal lobe epilepsy