Login / Signup

Rutin-protected BisGMA-induced cytotoxicity, genotoxicity, and apoptosis in macrophages through the reduction of the mitochondrial apoptotic pathway and induction of antioxidant enzymes.

Fu-Mei HuangYu-Chao ChangChun-Hung SuSheng-Wen WuShiuan-Shinn LeeMin-Wei LeeKun-Lin YehChen-Yu ChiangDom-Gene TuYin-Che LuYu-Hsiang Kuan
Published in: Environmental toxicology (2020)
Bisphenol-A-glycidyldimethacrylate (BisGMA) is a resin monomer frequently used in dentin restorative treatments. The leakage of BisGMA monomer from BisGMA-based polymeric resins can lead to cytotoxicity in macrophages. Rutin has various beneficial bioeffects, including antioxidation and antiinflammation. In this study, we found that pretreatment of RAW264.7 macrophages with rutin-inhibited cytotoxicity induced by BisGMA in a concentration-dependent manner. BisGMA-induced apoptosis, which was detected by levels of phosphatidylserine from the internal to the external membrane and formation of sub-G1, and genotoxicity, which was detected by cytokinesis-blocked micronucleus and single-cell gel electrophoresis assays, were inhibited by rutin in a concentration-dependent manner. Rutin suppressed the BisGMA-induced activation of caspase-3 and -9 rather than caspase-8. Rutin inhibited the activation of the mitochondrial apoptotic pathway, including cytochrome C release and mitochondria disruption, after macrophages were treated with BisGMA. Finally, BisGMA-induced reactive oxygen species (ROS) generation and antioxidant enzyme (AOE) deactivation could be reversed by rutin. Parallel trends were observed in the elevation of AOE activation and inhibition of ROS generation, caspase-3 activity, mitochondrial apoptotic pathway activation, and genotoxicity. These results suggested that rutin suppressed BisGMA-induced cytotoxicity through genotoxicity, the mitochondrial apoptotic pathway, and relatively upstream factors, including reduction of ROS generation and induction of AOE.
Keyphrases