Login / Signup

Poly(tris(4-carbazoyl-9-ylphenyl)amine)/Three Poly(3,4-ethylenedioxythiophene) Derivatives in Complementary High-Contrast Electrochromic Devices.

Chung-Wen KuoJeng-Kuei ChangYuan-Chung LinTzi-Yi WuPo-Ying LeeTsung-Han Ho
Published in: Polymers (2017)
A carbazole-based polymer (poly(tris(4-carbazoyl-9-ylphenyl)amine) (PtCz)) is electrosynthesized on an indium tin oxide (ITO) electrode. PtCz film displays light yellow at 0.0 V, earthy yellow at 1.3 V, grey at 1.5 V, and dark grey at 1.8 V in 0.2 M LiClO₄/ACN/DCM (ACN/DCM = 1:3, by volume) solution. The ΔT and coloration efficiency (η) of PtCz film are 30.5% and 54.8 cm²∙C-1, respectively, in a solution state. Three dual-type electrochromic devices (ECDs) are fabricated using the PtCz as the anodic layer, poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3,3-dimethyl-3,4-dihydro-thieno[3,4-b][1,4]dioxepine) (PProDOT-Me₂), and poly(3,4-(2,2-diethylpropylenedioxy)thiophene) (PProDOT-Et₂) as the cathodic layers. PtCz/PProDOT-Me₂ ECD shows high ΔTmax (36%), high ηmax (343.4 cm²·C-1), and fast switching speed (0.2 s) at 572 nm. In addition, PtCz/PEDOT, PtCz/PProDOT-Me₂, and PtCz/PProDOT-Et₂ ECDs show satisfactory open circuit memory and long-term stability.
Keyphrases
  • magnetic resonance
  • white matter
  • magnetic resonance imaging
  • gold nanoparticles
  • contrast enhanced