Login / Signup

Separating T Cell Targeting Components onto Magnetically Clustered Nanoparticles Boosts Activation.

Alyssa K KosmidesKevin NecocheaJohn W HickeyJonathan P Schneck
Published in: Nano letters (2018)
T cell activation requires the coordination of a variety of signaling molecules including T cell receptor-specific signals and costimulatory signals. Altering the composition and distribution of costimulatory molecules during stimulation greatly affects T cell functionality for applications such as adoptive cell therapy (ACT), but the large diversity in these molecules complicates these studies. Here, we develop and validate a reductionist T cell activation platform that enables streamlined customization of stimulatory conditions. This platform is useful for the optimization of ACT protocols as well as the more general study of immune T cell activation. Rather than decorating particles with both signal 1 antigen and signal 2 costimulus, we use distinct, monospecific, paramagnetic nanoparticles, which are then clustered on the cell surface by a magnetic field. This allows for rapid synthesis and characterization of a small number of single-signal nanoparticles which can be systematically combined to explore and optimize T cell activation. By increasing cognate T cell enrichment and incorporating additional costimulatory molecules using this platform, we find significantly higher frequencies and numbers of cognate T cells stimulated from an endogenous population. The magnetic field-induced association of separate particles thus provides a tool for optimizing T cell activation for adoptive immunotherapy and other immunological studies.
Keyphrases
  • cell therapy
  • stem cells
  • cell surface
  • mesenchymal stem cells
  • drug induced
  • binding protein
  • cancer therapy