β-Bracelets: Macrocyclic Cross-β Epitope Mimics Based on a Tau Conformational Strain.
Benjamin H RajewskiKamlesh M MakwanaIsaac J AngeraDanielle K GeremiaAnna R ZepedaGrace I HallinanRuben VidalBernardino GhettiArnaldo L SerranoJuan R Del VallePublished in: Journal of the American Chemical Society (2023)
The aggregation of misfolded tau into neurotoxic fibrils is linked to the progression of Alzheimer's disease (AD) and related tauopathies. Disease-associated conformations of filamentous tau are characterized by hydrophobic interactions between side chains on unique and distant β-strand modules within each protomer. Here, we report the design and diversity-oriented synthesis of β-arch peptide macrocycles composed of the aggregation-prone PHF6 hexapeptide of tau and the cross-β module specific to the AD tau fold. Termed "β-bracelets", these proteomimetics assemble in a sequence- and macrocycle-dependent fashion, resulting in amyloid-like fibrils that feature in-register parallel β-sheet structure. Backbone N-amination of a selected β-bracelet affords soluble inhibitors of tau aggregation. We further demonstrate that the N-aminated macrocycles block the prion-like cellular seeding activity of recombinant tau as well as mature fibrils from AD patient extracts. These studies establish β-bracelets as a new class of cross-β epitope mimics and demonstrate their utility in the rational design of molecules targeting amyloid propagation and seeding.