Login / Signup

Synergistic Effect of Charge Generation and Separation in Epitaxially Grown BiOCl/Bi2S3 Nano-Heterostructure.

Yanjie WangJiarui JinWeiguo ChuDavid CahenTao He
Published in: ACS applied materials & interfaces (2018)
Nano-heterostructures are widely used in the field of optoelectronic devices, and an optimal proportion usually exists between the constituents that make up the structures. Investigation on the mechanism underlying the optimal ratio is instructive for fabricating nano-heterostructures with high efficiency. In this work, BiOCl/Bi2S3 type-II nano-heterostructures with different Bi2S3/BiOCl ratios have been prepared via epitaxial growth of Bi2S3 nanorods on BiOCl nanosheets with solvothermal treatment at different sulfuration temperatures (110-180 °C) and their photoelectrochemical (PEC) performances as photoanodes have been studied. Results indicate that the Bi2S3 content increases with the sulfuration temperature. BiOCl/Bi2S3-170 (i.e., sulfurized@170 °C) exhibits the highest PEC performance under visible-light illumination, whereas BiOCl/Bi2S3-180 with the maximum Bi2S3 content shows the highest visible-light absorption, i.e., possessing the best potential for charge generation. Further analysis indicates that the BiOCl/Bi2S3 heterojunction interface is also crucial in determining the PEC performance of the obtained heterostructures by influencing the charge separation process. With increasing Bi2S3 content, the interface area in the BiOCl/Bi2S3 nano-heterostructures increases first and then decreases due to the mechanical fragility of the nanosheet-nanorod structure and the structural instability in the [010] direction of Bi2S3 with higher Bi2S3 content. Therefore, the increasing content of the Bi2S3 does not necessarily correspond to higher heterojunction area. The optimal performance of BiOCl/Bi2S3-170 results from the maximum of the synthetic coordination of the charge generation and separation. This is the first time ever to figure out the detailed explanation of the optimal property in the nano-heterostructures. The result is inspiring in designing high-performance nano-heterostructures from the point of synthesizing morphological mechanically robust heterostructure and structurally stable constituents to reach a high interfacial area, as well as high light-absorption ability.
Keyphrases
  • visible light
  • room temperature
  • high efficiency
  • reduced graphene oxide
  • ionic liquid
  • hip fracture
  • perovskite solar cells