Login / Signup

Structural biology of DOCK-family guanine nucleotide exchange factors.

Andreas BolandJean-François CotéDavid Barford
Published in: FEBS letters (2022)
DOCK proteins are a family of multi-domain guanine nucleotide exchange factors (GEFs) that activate the RHO GTPases CDC42 and RAC1, thereby regulating several RHO GTPase-dependent cellular processes. DOCK proteins are characterized by the catalytic DHR2 domain (DOCK DHR2 ), and a phosphatidylinositol(3,4,5)P 3 -binding DHR1 domain (DOCK DHR1 ) that targets DOCK proteins to plasma membranes. DOCK-family GEFs are divided into four subfamilies (A to D) differing in their specificities for CDC42 and RAC1, and the composition of accessory signalling domains. Additionally, the DOCK-A and DOCK-B subfamilies are constitutively associated with ELMO proteins that auto-inhibit DOCK GEF activity. We review structural studies that have provided mechanistic insights into DOCK-protein functions. These studies revealed how a conserved nucleotide sensor in DOCK DHR2 catalyses nucleotide exchange, the basis for how different DOCK proteins activate specifically CDC42 and RAC1, and sometimes both, and how up-stream regulators relieve the ELMO-mediated auto-inhibition. We conclude by presenting a model for full-length DOCK9 of the DOCK-D subfamily. The involvement of DOCK GEFs in a range of diseases highlights the importance of gaining structural insights into these proteins to better understand and specifically target them.
Keyphrases
  • case report
  • single cell
  • protein kinase
  • case control
  • protein protein