Login / Signup

Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal.

Sanfeng WuValla FatemiQuinn D GibsonKenji WatanabeTakashi TaniguchiRobert J CavaPablo Jarillo-Herrero
Published in: Science (New York, N.Y.) (2018)
A variety of monolayer crystals have been proposed to be two-dimensional topological insulators exhibiting the quantum spin Hall effect (QSHE), possibly even at high temperatures. Here we report the observation of the QSHE in monolayer tungsten ditelluride (WTe2) at temperatures up to 100 kelvin. In the short-edge limit, the monolayer exhibits the hallmark transport conductance, ~e2/h per edge, where e is the electron charge and h is Planck's constant. Moreover, a magnetic field suppresses the conductance, and the observed Zeeman-type gap indicates the existence of a Kramers degenerate point and the importance of time-reversal symmetry for protection from elastic backscattering. Our results establish the QSHE at temperatures much higher than in semiconductor heterostructures and allow for exploring topological phases in atomically thin crystals.
Keyphrases
  • room temperature
  • molecular dynamics
  • ionic liquid
  • density functional theory
  • transition metal