Login / Signup

Design and Synthesis of Nanosensor Based on Unsaturated Double Bond Functional Carbon Dots for Phenylephrine Detection Using Bromine As a Bridge.

Cheng ZhangXiangcao LiTaotao LiMeilin LiuKui ZhangYu ZhengMinhuan LanJian ZhangZhongping Zhang
Published in: Analytical chemistry (2021)
In recent years, carbon dots (CDs) have attracted great research interest in the field of nanochemosensors due to their fascinating optical properties. However, synthesis of CDs with novel recognition groups in a convenient method is still an area to be explored urgently. In this work, we reported a simple strategy to prepare fluorescent CDs with carbon-carbon double bonds (C═C) as the characteristic structure for phenylephrine (PHE) identification and detection. The itaconic acid and polyethylenimine (PEI) were selected as precursors to fabricate highly emissive CDs under the hydrothermal cross-linking and carbonization process. The fluorescence of designed CDs at 465 nm can be effectively quenched by bromine aqueous solution due to the electrophilic addition reaction with the double bonds. On the other hand, the presence of PHE can inhibit fluorescence quenching by bromine-consumption of a substitution reaction. Inspired by the novel findings, a convenient assay for PHE determination was established using the fluorescence of C═C bond functional CDs as an output signal and bromine as a bridge. The method demonstrated here provided a unique way to develop CD-based nanosensors.
Keyphrases