Login / Signup

Preparation and Characterization of Al/HTPB Composite for High Energetic Materials.

Alexander VorozhtsovMarat LernerNikolay RodkevichSergei SokolovElizaveta PerchatkinaChristian Paravan
Published in: Nanomaterials (Basel, Switzerland) (2020)
Nanosized Al (nAl) powders offer increased reactivity than the conventional micron-sized counterpart, thanks to their reduced size and increased specific surface area. While desirable from the combustion viewpoint, this high reactivity comes at the cost of difficult handling and implementation of the nanosized powders in preparations. The coating with hydroxyl-terminated polybutadiene (HTPB) is proposed to improve powder handling and ease of use of nAl and to limit its sensitivity to aging. The nAl/HTPB composite can be an intermediate product for the subsequent manufacturing of mixed high-energy materials while maintaining the qualities and advantages of nAl. In this work, experimental studies of the high-energy mixture nAl/HTPB are carried out. The investigated materials include two composites: nAl (90 wt.%) + HTPB (10 wt.%) and nAl (80 wt.%) + HTPB (20 wt.%). Thermogravimetric analysis (TGA) is performed from 30 to 1000 °C at slow heating rate (10 °C/min) in inert (Ar) and oxidizing (air) environment. The combustion characteristics of propellant formulations loaded with conventional and HTPB-coated nAl are analyzed and discussed. Results show the increased burning rate performance of nAl/HTPB-loaded propellants over the counterpart loaded with micron-sized Al.
Keyphrases
  • drug delivery
  • healthcare
  • primary care
  • particulate matter
  • wound healing
  • risk assessment
  • gold nanoparticles
  • case control