Login / Signup

SAR based on self consistent classifier.

Leonid A StolbovDmitry A FilimonovVladimir V Poroikov
Published in: SAR and QSAR in environmental research (2022)
The accuracy and performance of (Q)SAR models depend significantly on the data used for training. Datasets prepared on the basis of publicly available databases contain structures belonging to different chemical classes and have a highly imbalanced actives/inactives ratio. Currently, hundreds of structural descriptors are used in (Q)SAR studies. The abundance of structural descriptors gives rise to the problem of the constructed (Q)SAR models stability. The methods frequently used for the selection of a small fraction of the 'best' descriptors usually do not have sufficient mathematical justification. We propose a new approach to a self-consistent classifier for SAR analysis in order to overcome these problems. Logistic (SCLC) and extreme (SCEC) extensions of self-consistent regression (SCR) were implemented to enhance the classification capabilities of SCR. The approach was applied to classification models' development for inhibiting activity endpoints in HIV-1-related data and toxicity endpoints with subsequent fivefold cross-validation to estimate the models' performance. Comparison of the proposed SCLC and SCEC models with those developed using the original SCR and support vector machine demonstrated the comparable accuracy. Advantages in feature selection using our approach provide more generalizable (Q)SAR models. In particular, the crucial factors responsible for the observed value are determined unambiguously.
Keyphrases