Polymeric Design for Electron Transfer in Photoinduced Hydrogen Generation through a Coil-Globule Transition.
Kosuke OkeyoshiRyo YoshidaPublished in: Angewandte Chemie (International ed. in English) (2019)
To realize a renewable energy society, a polymeric system for photoinduced hydrogen generation utilizing a copolymer containing an electron acceptor was designed. In this system, the redox changes of viologen introduced into poly(N-isopropylacrylamide) cause cyclic conformational changes owing to the shifting of the phase transition temperature (PTT). The polymeric coil-globule transitions with hydrophilic/hydrophobic changes accelerate the electron transfer for hydrogen generation. In particular, hydrogen generation using visible-light energy with high efficiency is achieved around the PTT. In contrast to conventional solution systems, our polymeric system enables efficient hydrogen generation in a close molecular arrangement without the aggregation of catalytic nanoparticles. The utilization of conformational changes will provide a new strategy for synthesizing artificial photosynthetic hydrogels that split water to generate both hydrogen and oxygen.