Login / Signup

Radiation-Induced Heart Disease.

Juan A Quintero-MartinezSandra N Cordova-MaderaHector R Villarraga
Published in: Journal of clinical medicine (2021)
Cancer incidence and survivorship have had a rising tendency over the last two decades due to better treatment modalities. One of these is radiation therapy (RT), which is used in 20-55% of cancer patients, and its basic principle consists of inhibiting proliferation or inducing apoptosis of cancer cells. Classically, photon beam RT has been the mainstay therapy for these patients, but, in the last decade, proton beam has been introduced as a new option. This newer method focuses more on the tumor and affects less of the surrounding normal tissue, i.e., the heart. Radiation to the heart is a common complication of RT, especially in patients with lymphoma, breast, lung, and esophageal cancer. The pathophysiology is due to changes in the microvascular and macrovascular milieu that can promote accelerated atherosclerosis and/or induce fibrosis of the myocardium, pericardium, and valves. These complications occur days, weeks, or years after RT and the risk factors associated are high radiation doses (>30 Gy), concomitant chemotherapy (primarily anthracyclines), age, history of heart disease, and the presence of cardiovascular risk factors. The understanding of these mechanisms and risk factors by physicians can lead to a tailored assessment and monitorization of these patients with the objective of early detection or prevention of radiation-induced heart disease. Echocardiography is a noninvasive method which provides a comprehensive evaluation of the pericardium, valves, myocardium, and coronaries, making it the first imaging tool in most cases; however, other modalities, such as computed tomography, nuclear medicine, or cardiac magnetic resonance, can provide additional value.
Keyphrases