The Role of Salmonella Genomic Island 4 in Metal Tolerance of Salmonella enterica Serovar I 4,[5],12:i:- Pork Outbreak Isolate USDA15WA-1.
Bradley L BearsonJulian M TrachselDaniel C ShippySathesh K SivasankaranBrian J KerrCrystal L LovingBrian W BrunelleShelby M CurryNicholas K GablerShawn M D BearsonPublished in: Genes (2020)
Multidrug-resistant (MDR; resistance to >3 antimicrobial classes) Salmonella enterica serovar I 4,[5],12:i:- strains were linked to a 2015 foodborne outbreak from pork. Strain USDA15WA-1, associated with the outbreak, harbors an MDR module and the metal tolerance element Salmonella Genomic Island 4 (SGI-4). Characterization of SGI-4 revealed that conjugational transfer of SGI-4 resulted in the mobile genetic element (MGE) replicating as a plasmid or integrating into the chromosome. Tolerance to copper, arsenic, and antimony compounds was increased in Salmonella strains containing SGI-4 compared to strains lacking the MGE. Following Salmonella exposure to copper, RNA-seq transcriptional analysis demonstrated significant differential expression of diverse genes and pathways, including induction of at least 38 metal tolerance genes (copper, arsenic, silver, and mercury). Evaluation of swine administered elevated concentrations of zinc oxide (2000 mg/kg) and copper sulfate (200 mg/kg) as an antimicrobial feed additive (Zn+Cu) in their diet for four weeks prior to and three weeks post-inoculation with serovar I 4,[5],12:i:- indicated that Salmonella shedding levels declined at a slower rate in pigs receiving in-feed Zn+Cu compared to control pigs (no Zn+Cu). The presence of metal tolerance genes in MDR Salmonella serovar I 4,[5],12:i:- may provide benefits for environmental survival or swine colonization in metal-containing settings.
Keyphrases
- escherichia coli
- listeria monocytogenes
- multidrug resistant
- rna seq
- heavy metals
- genome wide
- oxide nanoparticles
- single cell
- copy number
- klebsiella pneumoniae
- drug resistant
- gram negative
- staphylococcus aureus
- drinking water
- acinetobacter baumannii
- gold nanoparticles
- risk assessment
- gene expression
- transcription factor
- bioinformatics analysis
- dna methylation
- metal organic framework
- oxidative stress
- human health
- cystic fibrosis