Synergistic Effect of Co-Delivering Ciprofloxacin and Tetracycline Hydrochloride for Promoted Wound Healing by Utilizing Coaxial PCL/Gelatin Nanofiber Membrane.
Mengxia LinYuan LiuJunwei GaoDonghui WangDan XiaChunyong LiangNing LiRuodan XuPublished in: International journal of molecular sciences (2022)
Combining multiple drugs or biologically active substances for wound healing could not only resist the formation of multidrug resistant pathogens, but also achieve better therapeutic effects. Herein, the hydrophobic fluoroquinolone antibiotic ciprofloxacin (CIP) and the hydrophilic broad-spectrum antibiotic tetracycline hydrochloride (TH) were introduced into the coaxial polycaprolactone/gelatin (PCL/GEL) nanofiber mat with CIP loaded into the PCL (core layer) and TH loaded into the GEL (shell layer), developing antibacterial wound dressing with the co-delivering of the two antibiotics (PCL-CIP/GEL-TH). The nanostructure, physical properties, drug release, antibacterial property, and in vitro cytotoxicity were investigated accordingly. The results revealed that the CIP shows a long-lasting release of five days, reaching the releasing rate of 80.71%, while the cumulative drug release of TH reached 83.51% with a rapid release behavior of 12 h. The in vitro antibacterial activity demonstrated that the coaxial nanofiber mesh possesses strong antibacterial activity against E. coli and S. aureus . In addition, the coaxial mats showed superior biocompatibility toward human skin fibroblast cells (hSFCs). This study indicates that the developed PCL-CIP/GEL-TH nanofiber membranes hold enormous potential as wound dressing materials.
Keyphrases
- wound healing
- drug release
- drug delivery
- multidrug resistant
- tissue engineering
- pseudomonas aeruginosa
- silver nanoparticles
- gram negative
- bone regeneration
- physical activity
- escherichia coli
- induced apoptosis
- mental health
- drug resistant
- drinking water
- risk assessment
- antimicrobial resistance
- cancer therapy
- acinetobacter baumannii
- human health
- cell death
- anti inflammatory