Titanium Surfaces with a Laser-Produced Microchannel Structure Enhance Pre-Osteoblast Proliferation, Maturation, and Extracellular Mineralization In Vitro.
Yi-Wen ChenTao ChiangI-Hui ChenDa-Yo YuhHsiu-Yang TsengChuang-Wei WangHsin-Han HouPublished in: International journal of molecular sciences (2024)
The clinical success of dental titanium implants is profoundly linked to implant stability and osseointegration, which comprises pre-osteoblast proliferation, osteogenic differentiation, and extracellular mineralization. Because of the bio-inert nature of titanium, surface processing using subtractive or additive methods enhances osseointegration ability but limits the benefit due to accompanying surface contamination. By contrast, laser processing methods increase the roughness of the implant surface without contamination. However, the effects of laser-mediated distinct surface structures on the osteointegration level of osteoblasts are controversial. The role of a titanium surface with a laser-mediated microchannel structure in pre-osteoblast maturation remains unclear. This study aimed to elucidate the effect of laser-produced microchannels on pre-osteoblast maturation. Pre-osteoblast human embryonic palatal mesenchymal cells were seeded on a titanium plate treated with grinding (G), sandblasting with large grit and acid etching (SLA), or laser irradiation (L) for 3-18 days. The proliferation and morphology of pre-osteoblasts were evaluated using a Trypan Blue dye exclusion test and fluorescence microscopy. The mRNA expression, protein expression, and protein secretion of osteogenic differentiation markers in pre-osteoblasts were evaluated using reverse transcriptase quantitative polymerase chain reaction, a Western blot assay, and a multiplex assay, respectively. The extracellular calcium precipitation of pre-osteoblast was measured using Alizarin red S staining. Compared to G- and SLA-treated titanium surfaces, the laser-produced microchannel surfaces enhanced pre-osteoblast proliferation, the expression/secretion of osteogenic differentiation markers, and extracellular calcium precipitation. Laser-treated titanium implants may enhance the pre-osteoblast maturation process and provide extra benefits in clinical application.
Keyphrases
- bone marrow
- high speed
- mesenchymal stem cells
- signaling pathway
- risk assessment
- high resolution
- endothelial cells
- magnetic resonance
- high throughput
- bone regeneration
- induced apoptosis
- radiation therapy
- pseudomonas aeruginosa
- drinking water
- single molecule
- cell death
- south africa
- mass spectrometry
- oxidative stress
- newly diagnosed
- protein protein
- small molecule
- climate change
- computed tomography
- cell cycle arrest